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A new characterization of equilibrium states for classical lattice systems is given 
in terms of correlation inequalities. Their physical meaning is found to express 
thermodynamic stability. We demonstrate the applicability of the inequalities in 
specific models. 
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1. INTRODUCTION 

Recently new rigorous results on absence of long-range order, absence of 
symmetry breaking, etc. in statistical mechanics have been obtained (see 
Refs. 1-8). 

These results often rely on the use of the Bogoliubov inequality when it 
is available (i.e., for quantum systems or for classical systems with a 
Poisson bracket structure) or on considerations dealing with the energy of 
configurations (energy versus entropy balance). 

This paper emerged from a concern of how these considerations about 
thermodynamic stability might be understood in a more systematic way. 
For classical lattice systems we prove that the stability can be expressed by 
means of correlation inequalities, which we derive in Section 2 from the 
DLR (12) equations. The setup and the derivations are performed immedi- 
ately for the infinite system. Moreover we prove that these correlation 
inequalities form in a way a complete set in the sense that if any state 
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satisfies these inequalities, the state must necessarily also satisfy the DLR 
equations. It means that our correlation inequalities characterize fully the 
equilibrium states. 

In Section 3 we give an alternative derivation from the variational 
principle. Of course, this method works only for translation invariant states, 
but it enhances the physical meaning of these inequalities as consequences 
of stability of the free energy against dissipative perturbations of a general- 
ized Glauber type. This leads to the interpretation of the inequalities as 
expressing a balance between the entropy change against the energy 
change. One might also remark on the formal analogy of our inequalities 
with the quantum mechanical ones. (9-1t) 

Finally in a last section we demonstrate the technical power of the 
inequalities in specific models. Not only do they reproduce easily the 
sharpest results but also they give a more systematic understanding of a 
priori different techniques or phenomena. 

Finally let us define our scheme. We consider the lattice Z~. At each 
site j ~ Z ~ we associate a copy Kj of some configuration space K, where K 
is assumed to be a compact Hausdorff space. 

Given XC_Z~, let K x be the product I~ ( j E X )  Kj and denote 
K ~ =  K Z~. To each bounded subset A c 2 ~ there corresponds a finite 
system in A with configuration space K A, algebra of observables C(K A) (=  
the set of real-valued continuous functions on KA). Consider a normalized 
regular Borel measure P0 on K and denote also by p0(dx), x ~ K A the 
product measure on C(KA). 

The interaction is given by a set of functions q~(X), X c Z ~, such that 
r E C(K x) and which are translation invariant, i.e., if r~(i E Z ") 
represents the translation automorphism then ff(X + i ) =  ~-iq,(X). Finally 
we impose the condition that 

Ill,Ill = II ,(X)ll < oo 
(I) 

[I, (X)ll = sup I + ( X ) ( x ) l  
x @ K  x 

The local Hamiltonians of the system are then defined as 

o ( x )  
X c A  

2. DLR EQUATION AND CORRELATION INEQUALITIES 

A way of defining equilibrium states (not necessarily translation invari- 
ant) is by means of the DLR equations. (12) These equations are conditions 
on the probability distributions of the equilibrium state, relative to fixed 
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boundary conditions. Those probability measures are supposed to be abso- 
lutely continuous with respect to the a priori measure P0. 

DefiniUon 2.1. Let p be a state of C(K~) ,  then O satisfies the D L R  
equations for the interaction q>, if (i) for all finite A c 71 9 the measure 
p(s, dr) on K Ac is uniquely defined for all s E K A such that 

o(f)=fKAfKAJ(sXr)o(s, dT)Oo(dS ) fora l l  f E C ( K  ~) 

(ii) for all A C ~" and s l ,s  2 E K A and boundary condition r ~ K A< the 
measure O(s, dr) satisfies 

p(s, , dr) = exp[ - rHA(S1) -[- .rHA(S2) ]P(S2, dr) 

where rHA(s ) = EXnA~+O(X)(s X r). 

It  is well known that for translation-invariant states the definition of 
equilibrium states by means of the D L R  equations is equivalent with the 
one given by means of tangent functionals to the pressure or in terms of the 
variational principle (see next section). 

In Sections 2 and 3 we absorb the inverse temperature in the interac- 
tion. Denote by Q the set of p0-invariant, invertible maps U of K ~ onto 
K ~176 such that ~Ux)i = x  i for all i outside some finite A c 7/~. For any 
U E Q define U on C ( K  ~ by 

( l~f)(x)  = f (  U - ix) ,  f ~ C ( K  oo), x ~ K ~ 

and denote UH - H = limA, ( UH A, - HA, ) 

Theorem 2.2. If p satisfies the D L R  equations (2.1) then for all 
U ~ Q a n d f  ~ C(K~176  >> O, fv~  0 we have 

p(f)ln p(f) <<. p( f (U- lH-  H)) 
o(Uf) 

Proof. Take any positive f i n  C ( K  ~ and U E Q. Then there exists a 
finite A c 77 ~ such that K Ac is pointwise invariant under U. It  is easily 
checked from 2.1 that o(f)  > 0 and 

o(c:i) = v - ' c "  • a )oo(a,) 

= f,<Af,<J( v -  1s x "l')p(s, dr)Po(ds) 

= • ,-)p(v,, d )Oo(d,) 

: • 
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Remark that by (1) s x "c-%HA(s ) -- ~HA(US ) E C(K~). By convexity of 
t-+ exp t; applying Jenssen's inequality 

o ( f ( H -  H.  U)) �9 
o(Of) >/o(f)exp o(f)  

This theorem yields a set of inequalities for correlation functions. 
Before relating them to the variational principle of statistical mechanics we 
want to examine how good they are. In fact, we will prove that they form a 
complete set by proving that any state satisfying these inequalities necessar- 
ily must satisfy the DLR equations. 

In order to prove this statement we need that there are enough 
elements in the set Q. Therefore we assume the following condition on the 
lattice site phase space K. 

Condi t ion.  We suppose that there exists a compact group G of 
homeomorphisms of K acting transitively on K, i.e., for all x, y E K there 
exists a U E G such that Ux = y. 

As a consequence of this assumption there exists a unique G-invariant 
probability measure 0o on K which defines the a priori measure. Remark 
that in all the current models this condition is satisfied. 

Now we denote by Q0 the group of transformations on K ~o generated 
by the products IIj~z, Uj where only a finite number of Uj C Gj are 
different from the neutral element and where Gj is a copy of G at the j th  
site. 

Theorem 2.3. If 0 is a state of C(K ~ such that for all U ~ Q0 and 
all positive f ~ C(K ~ 

P(f) < o(f(~r-  ~H - H))  
p(f ) ln  o(Uf) 

then p satisfies the DLR equations. 

Proof. From the inequalities, if K Ac is left pointwise invariant under 
U E Q0, then for all f E C(K ~), f >1 0 

p(f)  <. M(A)p((]f) 
and 

p(Uf) <<. M(A)p( f )  

where M(A) = exp2[A[- ]][~H]. 
Hence the measure p is absolutely continuous with respect to the 

measure p.  [7. Therefore, letting QA be the subgroup of Q0 leaving the 
space K Ac pointwise invariant and dv A the Haar measure of QA, then 

o(f)  <~ M(A) foJVA (u)p(Of)  



Energy-Entropy Inequalities for Classical Lattice Systems 551 

for a l l f  ~ C(Ka), f >/0. As Po is the unique Q~-invariant measure, one has 

p( f )  <<. M(A)po( f )  and also Oo(f) < M ( A ) o ( f )  

Hence the restrictions of O and Po to C(K A) are mutually absolutely 
continuous. For all f E C(K  ~ 

o ( f )  = ~eKAfEK_~cfts X ~')ots, d'r)po(ds ) 

and for all f ) 0 the inequality can be written as 

o( f )  fKA/KA f f (s  • "r)[,HA(US)-,HA(S)]p(s,d'r)Oo(ds) 
< exp 

o(c f) fKAfI AJ(" • 
Let s o and slbe arbitrary elements of K A and U ~ Q0 A such that Us o = s 1 . 
Using the continuity of s • ~ - ~ H a ( U s  ) - ~HA(S) for all finite A, by taking 
for f a &convergent sequence with carrier s o • z 0 one gets Oo(ds) almost 
everywhere: 

p(So, d%) < p(s I , d%)exp [r0Ha(Sl) -- ,oHA(so) 1 

By interchanging s o and s I one gets the reverse inequality, hence the 
equality. This proves the theorem. [] 

It is clear from this theorem that the inequality can be used as a 
complete characterization of an equilibrium state, also in the case of 
non-translation invariant states. 

3. VARIATIONAL PRINCIPLE 

We now give a physical motivation of the correlation inequalities by 
deriving them, for translation-invariant states, from the variational princi- 
ple of statistical mechanics. 

Let E be the set of translation-invariant states locally absolutely 
continuous with respect to Oo, i.e., for each finite A C 7/~, o ( f ) =  P0(PAf), 
f ~ C(KA), where PA/> 0 and Po(OA) = 1. The entropy density is given by 

s ( p ) =  lim - ~ p ( l n o A )  
IAl-+~ 

where [A[ is the number of lattice points in A. The map p -+ s(p) is an affine 
upper semicontinuous map for the w* topology. (13) 

The energy density is given by 

P(HA) 
e(p) -- lim - o(Ar 

where 

E Z2-V e C(K 
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Now any state O E E is said to satisfy the variational principle if it 
minimizes the free energy: f(p) = e(p) - s(p). 

The idea is the following: if P satisfies the variational principle we 
perturb p in a translation-invariant way by applying a Markov semigroup. 
Then we look for an upper bound for the first-order variation of the free 
energy. For quantum mechanical systems this idea was developed before in 
Refs. 10 and 11, for continuous classical systems in Ref. 14. 

Therefore we have to specify first of all the semigroups. 
We consider the following set of generators (a subset of those of Ref. 

15): for any A c 7/~ let 0 < f E C(K A) and U E Q0 A, define E for all local 
observables g: 

(~g) (x)=  E T i f ( x ) ( ~ - [ i  - 1)g(x) 
i E Z  ~ 

where 6i  = 
For notational convenience we omit the f and U dependence of the 

generator ~. The closure of ~ generates a strongly continuous one- 
parameter unity preserving contraction semigroup of positive maps 
{eXe}x~s + .(15) 

Lamina 3.1. Under the assumptions of above, we have the follow- 
ing: (i) The energy per lattice site Ao belongs to the domain of the 
generator E. (ii) For any p ~ E 

( e ~  1 ) l imp -~-- A~ = p ( f ( ~ r . H -  H)) 
X-~O + 

P r o o f .  An easy estimate yields the convergence of the formal se- 
quence 

iEZ v 

In fact, it is bounded by 21A I IIfll II[ lll. Furthermore, let (A.}.  be an 
increasing, absorbing set of cubes, and 

~(X) 

(aq,)n= E Ix l  OEXC_An 

then 

and 

II(AO-A~ll < ~ IIq,(X)l[~O if n~<~ 
O E X  c A , ,  

II~((A,).) - ff((A~s).,)ll < 211filiAl ~ I[+(X)II 
O ~ X  N An,\An ~ G  

This proves (i). 
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Using translation invariance, the definition of A, and the estimates of 
above, 

p(~(Ar i~EZ ~p (~f- l )  i~X2 [X I 
X NA~q, 

--0(6 nA:~o 

= o ( f ( ( f n -  H)) [] 

Lemma 3.2. Under the assumptions above 

s(p" Tx) - s(p) p(f) 
lim > p(f)ln - -  

x o(r-?- 7) 

Proof. Consider (A.}.  an increasing absorbing sequence of cubes. 
Denote by 

= E l) 
i ~ Z  ~ 

i + A c A .  

where f ~ C(K A) and U ~ QA for some finite A c 7/~. Then C(K A") is left 
globally invariant under expXE.. For any p E E, let O. be the local weight 
functions of O restricted to A~ with respect to O0. Define the map 0 from 
(R +, N + ) to R: 

q~(u,v)=u In u if u > 0 ,  v > 0  
v 

= 0  if u = 0 ,  v > 0  
= ~  if u>O,  v = O  

We first consider the case that the state p is separating, i.e., for all 
f ~ C(K oo), f va 0 we have p(f2) > 0. 

By the joint convexity of the function: (u, v ) ~  0(u, v) one gets 

-p.(e.(lnpn))>O.( ~. T~)ln p'(i+AcA" ~ •'/f) 

i + A c A  n 

Let (p.exp Xs be the periodic extension to C(K ~~ of the state p.exp)tE. 

of C(KA.), and denote by (p.exp?ts its translation invariant mean. 
Clearly, 

w* - lim(p~ �9 exp)ts p. expXs 
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Using the affinity of the entropy density on the set of periodic states and its 
upper semicontinuity 

S(On. exp ~n)  
lim 

. IAnl 

Therefore 

lira lira 
X---~O + n 

= li___mm s((0n �9 exp XEn)p) 
n 

=l~ns((0n. expXs < s(0" expX~) 

S(Pn" exp XE.) - S(on) < lim s(o .expXE)-  s(o) 
AlAn] x-,0+ X 

Furthermore, using the inequality (*) derived above, with the notation of 
~*, Oo(e*(f)g) = Oo(fe(g)); f, g ~ C(K~) then 

S(on " exp)tEn) - S(on) 
lira lim 

X--)O + n ~klAnl 

= x-,o +lim l i m -  xl fox ]-A-~Tds fKA, po(dx)~ sd (expss 

= lira l i ra-  1 x x-,o + -Xfoo ds fKa~ (Oo)en(ln[exps~,n(p,)] } 

>~lim li~n ~ 2Xds L i+AcAn 
x - ~ o +  - ]A~I 

• In k i + A c A .  

0,,Iexp S~n(i+ A~c A Zi ~ -  ~f) 1 (**) 

Next we remark on the continuity of 

s--~(s,n)-- ~-~ L \i+AcA,, 

uniformly in n. Indeed 

p.[exp(sE.)g.( ~ r~] 

~< Is, - s2121[fl12[A[ 2 
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As On is separating and as the function ~ is continuous on ([0, or (0, m)), 
the integrand of (**) is continuous in the variable s, uniformly in n. By 
interchanging the limits, using the mean value theorem, one gets 

lim s(o" e ~) - s(o) o( f)  
x__,0 + X i> 0(f ) ln  0( U -  ~f~) 

Finally one has to remove the requirements of 0n being separating. As 00 is 
invariant under QA one readily checks that it is separating. Now if O is not 
separating, consider then the state p, = (1 - ~')P + TOo, ~" ~ (0, 1). Clearly, O~ 
is separating and from above we have 

s(o,.  e xe) - s(p,) o , ( f )  
lim /> p~(f)ln p , (U-~f )  x~0 + ~t 

From the affinity of the entropy density and the fact that s(oo" e Ae) <<. s(oo) 
= 0 we get the desired result. �9 

Now we are in a position to prove the following: 

Theorem 3.3. If 0 is a state in g satisfying the Variational principle, 
then for all positive elements f of C(K ~) and all U E Q0 A, A an arbitrary 
finite volume, we have 

P(f) 
o(f ) ln  O(/~- ~) ~< o(f(  OH - H))  

Proof. As O satisfies the variational principle; 

( ( e X ~ - l ) )  s (p ' eX~) -s (P)  
lim 0 X A~ /> lira 

x_~0 + ~_~0 + )k 

The result follows now from Lemmas 3.1 and 3.2. ! 

4. ILLUSTRATION 

As an illustration of the kind of problems tractable by the inequality 
we consider the case of spin- l /2  systems (i.e., K =  (1, -1}) .  

Simon and Sokal (7) derive among others some results on one- 
dimensional long-range models. Their method consists in proving that 
appropriate, absolutely nontrivial, sets of configurations are excluded on 
the basis of thermodynamic stability. From Section 3, one might expect our 
inequality to do a similar job. In fact, it turns out that we do not have to 
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deal explicitly with configurations but only to make a suitable, yet natural 
choice of a positive function. Moreover, as the inequality is immediately 
given for the infinite system, we avoid troublesome estimations induced by 
boundary effects. 

On the other hand, Fr6hlich and Pfister (3) prove, using the concept of 
relative entropy, the absence of spontaneous breaking of the internal and 
spatial symmetry in classical two-dimensional systems. Below we illustrate 
our method for this kind of problems by proving translation invariance for 
one-dimensional long-range spin- l /2  systems. 

These illustrations deal essentially with absence of symmetry breaking. 
It would also be interesting to prove the existence of these phenomena (see, 
e.g., Ref. 16) along these lines. 

Let 

H A  ~- -- [~ 2 J i j~  , A C ~  
i < j E A  

where o i stands for the function o on the ith site, taking the values +__ 1 on 
K = { - 1, 1 ) and where J/j E R. We impose the usual conditions: 

(i) Jy = J([i - j l ) ,  J(0) = 0 

(ii) ~ IJ(j)l < 
j = l  

The expectation values in an equilibrium state t9 will be denoted by the 
brackets: o(A) = (A),  A E C(K~). 

Proposition 4.1 (7) If the interaction satisfies 

2 = klJ(k)l 
lim = 0 

N---) ~ l nN  

and if the translation-invariant state satisfies 

N 

1 E ((akat)  -- (ao) 2) ~ N % 
4N 2 k , l=-N 

for some C and a > 0, then (o05 = 0. 

Proof. Substitute in the inequality 2.2 for f the function 

IN ]2 l Y, + (,,o5) 
k=-N 
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and for U the operation UN flipping all spins of the interval [ - N, N]; then 
N 

( ~ v f N ) -  1 Z ((~176176 
4N 2 k,l=--N 

also 

and 

(fN) = 4(00): + (UNfN) t> 4(0o) a 

Now 

KfN(H o VN - H))I < (fN)IIH o Vy -- HII 

llH o U u -  H[I < 4fl[ 
N o~ ] 
E IkJ(~:)l + N E IJ(k)l 

k = l  k = N + l  

M 

lira lim N ~2 I J (k) [=0  
N-->oo M-~oo I n N  k ~ N +  l 

follows from the condition on the interaction. Gathering all this informa- 
tion in the inequality one gets 

4(Oo)2in 4(Oo)2N,~ [ iv  ~ 1 C < 16fl(~ 2 Z kIJ(k)l + N Z IJ(k)l 
k = l  k = N + l  

Dividing both sides of this inequality by InN and taking the limit of N 
tending to infinity, one gets a result contradicting (%) r 0. [] 

Remark that the same proof can be used to derive that all odd-point 
functions vanish under the same condition on the interaction and an 
analogous cluster property. 

It follows also from the proof  that the specific decay rate of the 
clustering is irrelevant if the interaction satisfies the more stringent condi- 

0 0  tion ~k=lkIJ(k)t < oz. 
Now we prove spatial invariance of the equilibrium state. The proof 

uses mainly the inequality to prove absolute continuity of the state with 
respect to its translate. Concerning the idea of working toward proving 
relative absolute continuity of states one should refer to Refs. 2, 3, 17, 
and 18. 

Using the following estimate 
M M M - 1  l 

N 2 ]J(k)l < ~ ~ klJ(k)l + N ~,, 2 klJ(k)l 
k ~ N + l  k = l  l ~ N + l  k = l  

one checks immediately that 
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P r o p o s i t i o n  4.2. If the interaction satisfies 

[ ] S u p  E k l J ( k ) - J ( k - 1 ) l + N  __ [ J ( k ) - J ( k - 1 ) [  <oo  
N [ k = l  k = N + l  

then any equilibrium state is spatially invariant. 

Proof. Take in the inequality 2.2 for (~ the map (~N of the interval 
[ - N ,  N] into itself given by 

~]NOi = Or/+ 1 if i = --N, . . . , N -  1 

~fNON .~. (1 N 

~fNOj = aj if [j[ > U 

Then for any positive function f of C(K ~) one has again 

Kf(I)N o H -  H))[  < (f)[[ UN o H -  HII 

Now by an elementary but tedious counting one gets 

II&u ~ H -  H[I < lnC 

where 

l n C =  fl[12k=l ~ [J(k)[ + 2k=l ~ k [ J ( k ) - J ( k - 1 ) [ ]  

is independent of N. 
After substitution of this bound in the inequality 

In ( f )  < lnC 

Remark that 

lim (UNf)= ('r,f) 
N--~ oo 

where ~-1 is the translation over one lattice site. Hence for all positive 
f E C(K~ 

c - l ( ~ - l f )  <~ ( f )  <<. ( 'r,f)C 

It is by now a standard argument (see, e.g., Refs. 17 and 18) to conclude 
that two extremal DLR states which are mutually absolutely continuous 
coincide. �9 

Remark that the condition on the potential is automatically satisfied in 
the case of ferromagnetic or antiferromagnetic systems if the function 
k ~ J(k) is monotone for k large enough. 
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Finally, we close with an illustration about  the exponential  decay  of 
correlations for the tJ-dimensional Ising model  in a cubic lattice. 

Denote  

A n = {z ~ 2~[1 <<. z~ <~ n ; z i = O f o r i ~ =  l} 

and 

n- oo n < - -  ( 0 0 )  
k 

for any translation-invariant  equilibrium state. 

Proposition 4.3 (Schor (19)). If  ( % )  ~ 0 then m ~< 4(u - 1)flJ. 

Proof .  We use again 2.2 with again the positive funct ion 

fA, = ~-7 E (Oe + (O0>) 
k~A~ 

and again U, the flip of all spins in A n. Substitute the easy estimate 

II0n o H -  Oil -<< 4(p - 1) f lJn  + 4 f l J  

in the inequality. Divide both  sides by  n and take the limit n tending to 
infinity. []  

For  small temperatures,  this result is optimal. Indeed,  in that case the 
upper  b o u n d  obta ined here coincides with the lower bound  as obta ined 
f rom the Peierls argument.  
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